Analysis of hepatocyte nuclear factor-3 beta protein domains required for transcriptional activation and nuclear targeting.

نویسندگان

  • X Qian
  • R H Costa
چکیده

Three distinct hepatocyte nuclear factor 3 (HNF-3) proteins (alpha, beta and gamma) regulate transcription of the transthyretin (TTR) and numerous other liver-specific genes. The HNF-3 proteins bind DNA via a homologous winged helix motif common to a number of developmental regulatory proteins including the Drosophila homeotic fork head (fkh) protein. The mammalian HNF-3/fkh family consists of at least thirty distinct members and is expressed in a variety of different cellular lineages. In addition to the winged helix motif, several HNF-3/fkh family members also share homology within transcriptional activation region II and III sequences. In the present study we further define the sequence boundaries of the HNF-3 beta N-terminal transcriptional activation domain to extend from amino acids 14 to 93 and include conserved region IV and V sequences. We also demonstrate that activity of the HNF-3 N-terminal domain was diminished by mutations which altered a putative alpha-helical structure located between amino acid residues 14 and 19. However, transcriptional activity was not affected by mutations which eliminated two conserved casein kinase I sites or increased the number of acidic amino acid residues in the N-terminal domain. Furthermore, we determined that the nuclear localization signal overlaps with the winged helix DNA-binding motif. These results suggest that conserved sequences within the winged helix motif of the HNF-3/fkh family may be involved not only in DNA recognition, but also in nuclear targeting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of hepatocyte nuclear factor 4 transcriptional activity by the nuclear factor kappaB pathway.

HNF-4 (hepatocyte nuclear factor 4) is a key regulator of liver-specific gene expression in mammals. We have shown previously that the activity of the human APOC3 (apolipoprotein C-III) promoter is positively regulated by the anti-inflammatory cytokine TGFbeta (transforming growth factor beta) and its effectors Smad3 (similar to mothers against decapentaplegic 3) and Smad4 proteins via physical...

متن کامل

Transcriptional regulation of human microsomal triglyceride transfer protein by hepatocyte nuclear factor-4alpha.

Microsomal triglyceride transfer protein (MTP) catalyzes the assembly of triglyceride (TG)-rich apolipoprotein B-containing liver (e.g., VLDL) and intestinal (e.g., chylomicron) lipoproteins. The human MTP gene promoter is reported here to associate in vivo with endogenous hepatocyte nuclear factor-4alpha (HNF-4alpha) and to be transactivated or transsuppressed by overexpressed or by dominant n...

متن کامل

Transcriptional regulation in endoderm development: characterization of an enhancer controlling Hnf3g expression by transgenesis and targeted mutagenesis.

The hepatic nuclear factor 3gamma (Hnf3g) is a member of the winged helix gene family of transcription factors and is thought to be involved in anterior-posterior regionalization of the primitive gut. In this study, cis-regulatory elements essential for the expression of Hnf3g in vivo have been characterized. To this end, a 170 kb yeast artificial chromosome (YAC) carrying the entire Hnf3g locu...

متن کامل

Beta-catenin Forms Protein Aggregation at High Concentrations in HEK293TCells

Background: The canonical Wnt signal transduction (or the Wnt/β-catenin pathway) plays a crucial role in the development of animals and in carcinogenesis. Beta-catenin is the central component of this signaling pathway. The activation of Wnt/β-catenin signaling results in the cytoplasmic and nuclear accumulation of β-catenin. In the nucleus, β-catenin interacts with the TCF/LEF transcription fa...

متن کامل

CCAAT enhancer binding protein beta and hepatocyte nuclear factor 3beta are necessary and sufficient to mediate dexamethasone-induced up-regulation of alpha2HS-glycoprotein/fetuin-A gene expression.

Alpha2HS-glycoprotein/fetuin-A (Ahsg) is a serum protein preventing soft tissue calcification. In trauma and inflammation, Ahsg is down-regulated and therefore considered a negative acute phase protein. Enhancement of Ahsg expression as a protective serum protein is desirable in several diseases including tissue remodelling after trauma and infection, kidney and heart failure, and cancer. Using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 23 7  شماره 

صفحات  -

تاریخ انتشار 1995